
1
CIS 422/522

CIS 422/522 © S. Faulk 1

Architectural Design

Designing the Module Structure
Design Principles
Design Documentation

CIS 422/522 © S. Faulk 2

Architecture Design Process

Building architecture to address business goals:
1.  Understand the goals for the system
2.  Define the quality requirements
3.  Design the architecture

1.  Views: which architectural structures should we use?  
(goals<->architectural structures<->representation)

2.  Documentation: how do we communicate design decisions?
3.  Design: how do we decompose the system?

4.  Evaluate the architecture (is it a good design?)

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Decomposition Strategies

•  How do we develop this structure so that the leaf
modules make independent work assignments?
–  Dependencies are few
–  Decisions that might change are encapsulated
–  Interfaces are simple and well defined

•  Design goals: modifiability, work assignments,
maintainability, reusability, understandability, etc.

•  Observed strategies did not result in independent
modules
–  Use-case driven OOD, heuristics
–  MVC Pattern

•  What should be done differently?
–  Why did these approaches fail?

CIS 422/522 © S. Faulk 4

Use Case Driven OO Process

•  Address book design: in-class exercise
•  Requirements
•  Problem Analysis

–  Identify use cases from requirements
–  Identify domain classes operationalizing

use cases (apply heuristics)
•  OO Design (refinement)

–  Allocate responsibilities among classes
–  Identify object interactions supporting use

cases
–  Identify supporting classes (&

associations)
•  Detailed Design

–  Design class interfaces (class attributes
and services)

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Modular Structure

•  Architecture = components, relations, and interfaces
•  Components

–  Called modules
–  Leaf modules are work assignments
–  Non-leaf modules are the union of their submodules

•  Relations (connectors)
–  submodule-of => implements-secrets-of

•  Module is an aggregate of its submodules
–  Constrained to be acyclic tree (hierarchy)

•  Interfaces (externally visible component behavior)
–  Defined in terms of access procedures (services or method)
–  Services provide only access to module internals

CIS 422/522 © S. Faulk 6

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Design Principles

•  Principle (n): a comprehensive and
fundamental rule, doctrine, or assumption

•  Design Principles – rules that guide
developers in making design decisions
consistent with overall design goals and
constraints
–  Guide the decision making process of design by

helping choose between alternatives
–  Embodied in methods and techniques (e.g., for

decompositions)

CIS 422/522 © S. Faulk 8

Three Key Design Principles

•  Most solid first
•  Information hiding
•  Abstraction

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Principle: Most Solid First

•  View design as a sequence of decisions
–  Later decisions depend on earlier
–  Early decisions harder to change

•  Most solid first: in a sequence of decisions, those
that are least likely to change should be made
first

•  Goal: reduce rework by limiting the impact of
changes

•  Application: used to order a sequence of design
decisions
–  Generally applicable to design decisions
–  Module decomposition – ease of change

CIS 422/522 © S. Faulk 10

Information Hiding

•  Design principle of limiting dependencies
between components by hiding information
other components should not depend on

•  An information hiding decomposition is one
following the design principles that (Parnas):
–  System details that are likely to change

independently are put in different modules
–  The interface of a module reveals only those

aspects considered unlikely to change
–  Details other modules should not depend on are

encapsulated

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Decomposition Strategy

•  Decompose recursively
–  If a module holds decisions that are likely to change

independently, then decompose it into submodules
–  Decisions that are likely to change together are allocated to the

same submodule
–  Decisions that change independently should be allocated to

different submodules
•  Stopping criteria

–  Each module contains only things likely to change together
–  Each module is simple enough to be understood fully, small

enough that it makes sense to throw it away rather than re-do
•  Define the Interfaces

–  Anything that other modules should not depend on become
secrets of the module (e.g., implementation details)

–  If the module has an interface, only things not likely to change
can be part of the interface

CIS 422/522 © S. Faulk 12

Effects of Changes

•  Consider what happens to
communication among
module developers

•  Suppose we have groups of
requirements R1 – R3:

–  R1 and R3 are related and
likely to change together

–  R2 is likely to change
independently

•  Suppose we put R1 and R2
in the same module and
assign to different teams

–  What happens when R1
changes?

–  R2?
•  Suppose R1 and R3 are put

in the same module?

R3
R2

R1

R2
R1 R3

Interface Interface

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Abstraction

•  General: disassociating from specific
instances to represent what the instances
have in common
–  Abstraction defines a one-to-many relationship

E.g., one type, many possible implementations
•  Modular decomposition: Interface design

principle of providing only essential
information and suppressing unnecessary
detail

CIS 422/522 © S. Faulk 14

Abstraction

•  Two primary uses
•  Reduce Complexity

–  Goal: manage complexity by reducing the amount of
information that must be considered at one time

–  Approach: Separate information important to the problem at
hand from that which is not

•  Abstraction suppresses or hides “irrelevant detail”
•  Examples: stacks, queues, abstract device

•  Model the problem domain
–  Goal: leverage domain knowledge to simplify understanding,

creating, checking designs
–  Approach: Provide components that make it easier to model

a class of problems
•  May be quite general (e.g., type real, type float)
•  May be very problem specific (e.g., class automobile, book object)

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Exercise: Address Book Data Module

•  Design the “model” module
–  What should be hidden?
–  What services should it provide?
–  What else does the user need to know to use the module

correctly?

CIS 422/522 © S. Faulk 16

Lessons on Patterns

•  Patterns are often misused
•  Using a pattern correctly requires

understanding it
–  “Correctly” – such that the pattern’s design goals

are realized in your design
–  “Understanding” – you understand what the

pattern is supposed to accomplish, how it works,
and how to apply it in your context

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Lessons on Patterns (2)

•  A pattern is a three part rule that expresses
a relation between [Schmidt]:

1.  A particular problem context
2.  A set of competing forces (goals and

constraints) in that context
3.  A software configuration that resolves the set of

forces
•  Configuration == objects, interfaces, relations
•  Resolves == concurrently addresses the goals and

constraints

CIS 422/522 © S. Faulk 18

Summary

•  Heuristics and patterns are guidelines
–  Do not guarantee qualities
–  Must understand how and why they work to apply

effectively
•  Principles are more direct – achieve qualities

by construction
•  Good design requires careful thinking

–  Which goals are we trying to achieve
–  How design decisions address those goals

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Documenting a Module Structure

Communicating Architectural Decisions

CIS 422/522 © S. Faulk 20

Architecture Development Process

Building architecture to address business goals:
1.  Understand the goals for the system
2.  Define the quality requirements
3.  Design the architecture

1.  Views: which architectural structures should we use?
2.  Documentation: how do we communicate design decisions?
3.  Design: how do we decompose the system?

4.  Evaluate the architecture (is it a good design?)

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Purpose and Audience

•  To understand what to communicate,
consider who will use it and for what purpose
–  Coders/maintainers: defines the build-to spec.

•  Where to put/find specific parts of the system (e.g.,
where functionality is implemented)

•  Embodies system qualities as design decisions
•  Constrains detailed design and implementation

–  Quality stakeholders
•  How the system satisfies design goals
•  Why specific design decisions were made

–  Testers: which parts should be tested to establish
specific qualities

CIS 422/522 © S. Faulk 22

Communicating Architecture

•  Provide a set of views addressing key qualities
•  For each architectural view deployed

–  Which architectural structures are used (components,
relations, and interfaces)

–  Which quality requirements are being addressed in the
structure (why)

•  Within a given structure
–  How to use/navigate the structure to find specific

information
–  What design decisions are made
–  Rationale for important decisions

12
CIS 422/522

CIS 422/522 © S. Faulk 23

Example: Module Structure
Documentation

•  Module Guide
–  Documents the module structure:

•  The set of modules and the responsibility of each module in terms of
the module’s secret

•  The “submodule-of relationship”
–  Document purpose(s)

•  Guide for finding the module responsible for each aspect of the system
behavior

•  Provides a record of design decisions (rationale)
•  Module Interface Specifications

–  Documents all assumptions user’s can make about the module’s
externally visible behavior (of leaf modules)

•  Access programs, events, types, undesired events
•  Design issues, assumptions

–  Document purpose(s)
•  Provide all the information needed to write a module’s programs or use

the programs on a module’s interface

CIS 422/522 © S. Faulk 24

Address Book Modular Structure

AB

AddressBookGUI ABControl ABModel

BookControl EntryControl

Submodule-of

Module

13
CIS 422/522

CIS 422/522 © S. Faulk 25

Excerpts From The FWS Module Guide (1)

1.  AddressBookModel
The ABModel provides the services needed to store and retrieve information
about address books and the information contained in an address book.
Services
Provides the services needed to
Secret
How to use services provided by other modules to start and maintain the proper
operation of a FWS.

CIS 422/522 © S. Faulk 26

Excerpts From Module Guide (2)

2.  AddressBookControl Modules
The ABControl modules consist of those programs that need to be changed if the operations
on address books or address book entries are changed. The secrets of the AB modules
include how the model is used to store or retrieve data requested by the GUI and any
algorithms used to manipulate that data. It provides the services necessary to fulfill user
requests.

2.1. Wind Sensor Device Driver
Service
Provide access to the wind speed sensors. There may be a submodule for each sensor type.
Secret
How to communicate with, e.g., read values from, the sensor hardware.
Note
This module hides the boundary between the FWS domain and the sensors domain. The
boundary is formed by an abstract interface that is a standard for all wind speed sensors.
Programs in this module use the abstract interface to read the values from the sensors.

14
CIS 422/522

CIS 422/522 © S. Faulk 27

A Method for Specifying Interfaces

•  Define services provided and services needed
(assumptions)

•  Decide on syntax and semantics for accessing
services

•  In parallel
–  Define access method effects
–  Define terms and local data types
–  Define visible states of the module
–  Record design decisions

•  Define test cases and use them to verify access
methods
–  Cover testing effects, parameters, exceptions
–  Test both positive and error use cases

•  Can use Javadoc or similar

CIS 422/522 © S. Faulk 28

Benefits Good Module Specs

•  Enables development of complex projects:
–  Support partitioning system into separable modules
–  Complements incremental development approaches

•  Improves quality of software deliverables:
–  Clearly defines what will be implemented
–  Errors are found earlier
–  Error Detection is easier
–  Improves testability

•  Defines clear acceptance criteria
•  Defines expected behavior of module
•  Clarifies what will be easy to change, what will be

hard to change
•  Clearly identifies work assignments

15
CIS 422/522

CIS 422/522 © S. Faulk 29

For Your Projects

•  Develop at least one architectural view
•  Include rationale for the overall design
•  Include any significant design decisions
•  Outcome: should be able to trace from

requirements to code objects

CIS 422/522 © S. Faulk 30

Questions?

16
CIS 422/522

CIS 422/522 © S. Faulk 31
31 © S. Faulk 2010

